Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Environ Interact ; 2(4): 177-193, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37283700

RESUMO

Plants use a wide array of secondary metabolites including terpenes as defense against herbivore and pathogen attack, which can be constitutively expressed or induced. Here, we investigated aspects of the chemical and molecular basis of resistance against the exotic rust fungus Austropuccinia psidii in Melaleuca quinquenervia, with a focus on terpenes. Foliar terpenes of resistant and susceptible plants were quantified, and we assessed whether chemotypic variation contributed to resistance to infection by A. psidii. We found that chemotypes did not contribute to the resistance and susceptibility of M. quinquenervia. However, in one of the chemotypes (Chemotype 2), susceptible plants showed higher concentrations of several terpenes including α-pinene, limonene, 1,8-cineole, and viridiflorol compared with resistant plants. Transcriptome profiling of these plants showed that several TPS genes were strongly induced in response to infection by A. psidii. Functional characterization of these TPS showed them to be mono- and sesquiterpene synthases producing compounds including 1,8-cineole, ß-caryophyllene, viridiflorol and nerolidol. The expression of these TPS genes correlated with metabolite data in a susceptible plant. These results suggest the complexity of resistance mechanism regulated by M. quinquenervia and that modulation of terpenes may be one of the components that contribute to resistance against A. psidii.

2.
Proc Biol Sci ; 287(1922): 20192364, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32156194

RESUMO

Somatic mutations can have important effects on the life history, ecology, and evolution of plants, but the rate at which they accumulate is poorly understood and difficult to measure directly. Here, we develop a method to measure somatic mutations in individual plants and use it to estimate the somatic mutation rate in a large, long-lived, phenotypically mosaic Eucalyptus melliodora tree. Despite being 100 times larger than Arabidopsis, this tree has a per-generation mutation rate only ten times greater, which suggests that this species may have evolved mechanisms to reduce the mutation rate per unit of growth. This adds to a growing body of evidence that illuminates the correlated evolutionary shifts in mutation rate and life history in plants.


Assuntos
Arabidopsis/fisiologia , Taxa de Mutação , Filogenia , Fenômenos Fisiológicos Vegetais
3.
Phytopathology ; 108(4): 495-509, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29135360

RESUMO

Plants have developed complex defense mechanisms to protect themselves against pathogens. A wide-host-range fungus, Austropuccinia psidii, which has caused severe damage to ecosystems and plantations worldwide, is a major threat to Australian ecosystems dominated by members of the family Myrtaceae. In particular, the east coast wetland foundation tree species Melaleuca quinquenervia, appears to be variably susceptible to this pathogen. Understanding the molecular basis of host resistance would enable better management of this rust disease. We identified resistant and susceptible individuals of M. quinquenervia and explored their differential gene expression in order to discover the molecular basis of resistance against A. psidii. Rust screening of germplasm showed a varying degree of response, with fully resistant to highly susceptible individuals. We used transcriptome profiling in samples collected before and at 5 days postinoculation (dpi). Differential gene expression analysis showed that numerous defense-related genes were induced in susceptible plants at 5 dpi. Mapping reads against the A. psidii genome showed that only susceptible plants contained fungal-derived transcripts. Resistant plants exhibited an overexpression of candidate A. psidii resistance-related genes such as receptor-like kinases, nucleotide-binding site leucine-rich repeat proteins, glutathione S-transferases, WRKY transcriptional regulators, and pathogenesis-related proteins. We identified large differences in the expression of defense-related genes among resistant individuals.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Melaleuca/genética , Doenças das Plantas/imunologia , Transcriptoma , Austrália , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melaleuca/imunologia , Melaleuca/microbiologia , Modelos Biológicos , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Análise de Sequência de RNA , Árvores
4.
Front Microbiol ; 8: 2622, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354108

RESUMO

Mammalian herbivores rely on microbial activities in an expanded gut chamber to convert plant biomass into absorbable nutrients. Distinct from ruminants, small herbivores typically have a simple stomach but an enlarged cecum to harbor symbiotic microbes; however, knowledge of this specialized gut structure and characteristics of its microbial contents is limited. Here, we used leaf-eating flying squirrels as a model to explore functional characteristics of the cecal microbiota adapted to a high-fiber, toxin-rich diet. Specifically, environmental conditions across gut regions were evaluated by measuring mass, pH, feed particle size, and metabolomes. Then, parallel metagenomes and metatranscriptomes were used to detect microbial functions corresponding to the cecal environment. Based on metabolomic profiles, >600 phytochemical compounds were detected, although many were present only in the foregut and probably degraded or transformed by gut microbes in the hindgut. Based on metagenomic (DNA) and metatranscriptomic (RNA) profiles, taxonomic compositions of the cecal microbiota were dominated by bacteria of the Firmicutes taxa; they contained major gene functions related to degradation and fermentation of leaf-derived compounds. Based on functional compositions, genes related to multidrug exporters were rich in microbial genomes, whereas genes involved in nutrient importers were rich in microbial transcriptomes. In addition, genes encoding chemotaxis-associated components and glycoside hydrolases specific for plant beta-glycosidic linkages were abundant in both DNA and RNA. This exploratory study provides findings which may help to form molecular-based hypotheses regarding functional contributions of symbiotic gut microbiota in small herbivores with folivorous dietary habits.

5.
Mol Plant Pathol ; 17(5): 783-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26575410

RESUMO

Resistance genes (R genes) in plants mediate a highly specific response to microbial pathogens, often culminating in localized cell death. Such resistance is generally pathogen race specific and believed to be the result of evolutionary selection pressure. Where a host and pathogen do not share an evolutionary history, specific resistance is expected to be absent or rare. Puccinia psidii, the causal agent of myrtle rust, was recently introduced to Australia, a continent rich in myrtaceous taxa. Responses within species to this new pathogen range from full susceptibility to resistance. Using the myrtle rust case study, we examine models to account for the presence of resistance to new encounter pathogens, such as the retention of ancient R genes through prolonged 'trench warfare', pairing of resistance gene products and the guarding of host integrity.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Myrtus/genética , Myrtus/microbiologia , Doenças das Plantas/microbiologia , Austrália , Genes de Plantas , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...